logo
Card Swap Operators when moving Twos   Home  |  Your Feedback
Card Swap Home and Applet  |  3-Operators

Visit operators3.html for examples of operators using swaps of triples instead of pairs.


The way to solve the puzzle with the fewest moves is to gain some deep understanding of the given permutation. A more practical way is to solve most of it "by hook or by crook", and finish with a small unsolved region.

An operator is a sequence of moves. The useful ones are those that permute a small set of squares, leaving the others in place when they are done. Typically, operators rotate three squares (a "triangle") or swap two pairs.

For fastest solving, operators within the largest possible area are best. But their number quickly explodes. To keep the numbers under control, we look at operators confined to a 2x3 region of the grid. There are only 85 of them, and they are shown below. For a 2x4 region, there are 322, and for a 3x3 region, 546.

Note that since all moves include horizontally adjacent pairs, the lines used by these operators need not be adjacent. They need not align vertically either. Thus, a "region" can be any collection of sets of 3 (or 4) adjacent squares, each from a different line.

Operators in 2x3 Region

Designate the 6 squares of the chosen region with the letters A-F (Fig 1).

The notation for moves is as follows:
a letter pair such as AB means click Card A (selecting A and C), then click Card B (swapping A & C with B & D).

With 4 moves (Figs 3-4) we can rotate 3 cards, leaving everything else the same. With 6 moves (Fig 2), we can swap TWO pairs of cards, leaving everything else in place.

Following the sequences shown in each figure will achieve the result shown: a 3-way rotation or a two-pair swap.

Because each move swaps TWO pairs (an even number), it is not possible to swap just ONE pair of cards with ANY sequence of moves. (See the Threes page for the different circumstances when those moves swap three pairs.)

Here is what to do when just a single pair is swapped.

Note that Red 5 and 4 are out of order (Fig 5a).


Apply (CB AB AD) to get 3-4-5 in order for both colors, but on opposite lines (Fig 5b).

Then swap the 1-2 pairs to get 1-2-3-4-5 on the two lines, but with colors swapped from the original (Fig 5c).
This was necessary to make the total number of swaps even, including the one red 5-4 swap.

Catalog of Operators on 3 and 4 cards in 2x3 Region

   

   

 

Here is a computer-generated list of all 3-way and double-pair operators.

0.A C E
B D F
0Start
1.* * *
D F B
6AD CD AD CD CB AD
2.* * *
F B D
6AB AD CB CD AD CD
3.* * B
D E *
6AB CD AD CB AB AD
4.* * D
E B *
6AD AB CB AD AB CD
5.* * B
F * E
5AB AD AB CD CB
6.* * F
E * B
5CB AB CD AD AB
7.* * D
* F E
4CB AB AD AB
8.* * F
* E D
4AB AD AB CB
9.* B *
D C *
5AB CB CD AD CD
10.* D *
C B *
5AB CD CB CD AD
11.* B *
F * C
6CB AB AD CD AD AB
12.* F *
C * B
6AB AD CB AB AD CD
13.* B C
E * *
6AB AD AB CB CD CB
14.* E B
C * *
6AD CD CB AD AB CD
15.* D *
* F C
5AB CB AB AD CD
16.* F *
* C D
5CB AB AD AB CD
17.* D C
* E *
5AD AB CB AB CD
18.* E D
* C *
5AB AD AB CB CD
19.* E F
* * C
4AD AB CB AB
20.* F C
* * E
4AB CB AB AD
21.B * *
D A *
4CD CB CD AD
22.D * *
A B *
4AD CD CB CD
23.B * *
F * A
5AD AB CD CB CD
24.F * *
A * B
5CD CB AB CD AD
25.B * A
E * *
5CD AD AB CD CB
26.E * B
A * *
5CB AB CD AD CD
27.B A *
C * *
4CB CD AD CD
28.C B *
A * *
4CD AD CD CB
29.C D *
* A *
5AB AD CD CB CD
30.D A *
* C *
5AB CD AD CD CB
31.C E A
* * *
6AD CB AB AD AB AD
32.E A C
* * *
6AB AD AB CB AD CD
33.C F *
* * A
6AB CD AD CD CB AD
34.F A *
* * C
6AD AB AD CD CB CD
35.D * *
* F A
6AD CB AB AD AB CD
36.F * *
* A D
6AB CB AB AD CD AD
37.D * A
* E *
6AB AD CD CB AD CD
38.E * D
* A *
6AD AB CB CD CB AB
39.E * F
* * A
5AB CB AB CD AD
40.F * A
* * E
5AD AB CD CB AB
41.C A B
E * *
3CB AB CB
42.B E C
A * *
4AD AB CB CD
   
43.E B A
C * *
5CD AD AB AD CD
44.* * B
E F D
3CB CD CB
45.* * D
F E B
5AB AD CD AD AB
46.* * F
D B E
4AB CB CD AD
47.C A D
* E *
3CD AD CD
48.D E C
* A *
3AB CB AB
49.E D A
* C *
6AB CB AB CD AD CD
50.C A *
D B *
6AD CB AB AD CD AD
51.B D *
A C *
3CD AB CD
52.D B *
C A *
7AB AD CB AB AD CD AD
53.C A F
* * E
4AB AD CD CB
54.E F A
* * C
5AB CB CD CB AB
55.F E C
* * A
3AD CD AD
56.B F *
A * C
5AD CD CB CD AD
57.C A *
F * B
5AB AD AB AD AB
58.F B *
C * A
7AB CD CB AB CB AB CD
59.C A *
* F D
4CB AB CD CB
60.F D *
* C A
5AD CB AB CD CB
61.D F *
* A C
5AB CD AB CD AD
62.* B D
C E *
5AB CD AB CD CB
63.* D B
E C *
5AD AB CD AD CB
64.* E C
D B *
4AD AB CD AD
65.* B F
C * E
5CB AB AD AB CB
66.* E C
F * B
5CB CD CB CD CB
67.* F B
E * C
7AB AD CD AD CD AD AB
68.* D F
* C E
3AB CD AB
69.* E C
* F D
6AD AB AD CD CB AD
70.* F D
* E C
7AD AB AD CD CB AD CD
71.B * *
A F D
4CB AB AD CD
72.D * *
F A B
5CD CB AB CB CD
73.F * *
D B A
3AD AB AD
74.* B *
C F D
3AB AD AB
75.* D *
F C B
6AB AD AB CD CB CD
76.* F *
D B C
3CD CB CD
77.B * D
A E *
5CB CD AD CD CB
78.D * B
E A *
7AB CD AD AB AD AB CD
79.E * A
D B *
5AB CB AB CB AB
80.B * F
A * E
2AB CD
81.E * A
F * B
3AD CB AD
82.F * B
E * A
5AB AD CB AD AB
83.D * F
* A E
5AD AB CB AB AD
84.E * A
* F D
5AD CD AD CD AD
85.F * D
* E A
7AB CB CD CB CD CB AB